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Abstract—The monitoring of natural gas pipelines is highly de-
pendent on the information provided by different types of sensors.
However, sensors are prone to faults, which results in performance
degradation and serious hazards such as leaks or explosions. To
prevent catastrophic failures and ensure the safe and efficient
operation of the pipelines, it is crucial to timely diagnose sensor
faults in natural gas pipelines. This paper investigates model-based
sensor fault diagnosis techniques in a natural-gas pipeline under
transient flow. A fusing architecture based on distributed data
fusion is used for implementing the sensor fault detection, isolation,
and accommodation (SFDIA) mechanism. The fusing architecture
consists of a set of local filters and an information mixer. The
local filters estimate the state variables in parallel, which are
subsequently transferred to the information mixer to evaluate the
sensor faults and compute fault-free state estimates. In this paper,
three different types of fusing filters, namely based on the ensemble
Kalman filter (EnKF), fusing unscented Kalman filter (UKF), and
fusing extended Kalman filter (EKF) are investigated for fault
diagnosis. Results demonstrate that all three filters can successfully
detect, isolate, and accommodate sensor faults.

Index Terms—Data fusion, ensemble Kalman filter, extended
Kalman filter, fault diagnosis, model-based technique, natural-
gas pipelines, sensor validation, transient flow, unscented Kalman
filter.

I. INTRODUCTION

NATURAL gas is extensively utilized in household and
commercial settings, making safety requirements for

pipelines extremely relevant. Leakage monitoring techniques
play a vital part in safe system development and operation [1],
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and are also critical in various industrial scenarios [2]. Late or
missed detection of leakages may have dangerous consequences
such as explosions, therefore the development of efficient, ro-
bust, and reliable monitoring systems is crucial. Several monitor-
ing systems for urban gas pipelines have been recently deployed
to detect leaks in gas pipelines and underground areas [3],
[4]. However, most works have focused on leak detection in
steady-state flow [5], [6], [7], [8], while transient-flow modeling
that depicts the actual flow of fluids in pipelines has gained
attention only recently [9].

With the growth of smart cities and digital twins,1 pipeline
monitoring systems are expected to be an integral part of these
frameworks, particularly for safety-critical applications [10].
Moreover, sensors play a crucial role in urban gas-pipeline mon-
itoring systems and ensure the effective functioning of digital
twins for urban pipelines, since their status directly impacts
the security and reliability of the overall system. Unfortunately,
sensors are susceptible to damage during their operation due to
harsh environmental conditions which include sludge, decaying
materials, and floodwater [11].

Sensor-fault detection, isolation and accommodation (SF-
DIA) has proven to be an effective and necessary technique
for handling sensor faults in safety-critical systems. The main
objectives of SFDIA are to notify users when faults have oc-
curred, identify their location and structure, and possibly re-
place the corrupted information such that the system can keep
operating. In general, most SFDIA techniques can be divided
into model-based methods and data-driven methods. In recent
years, data-driven fault-diagnosis methods have received interest
due to their versatility and large availability of data in some
applications [12], [13], [14], [15]. However, they are more
difficult to use in industrial scenarios because a large amount
of data might not be available (e.g. due to excessive required
costs). Differently, model-based techniques are not limited by
data availability and, given that the system model is sufficiently
accurate, they exhibit interesting scaling and generalization
properties. Additionally, they are easy to interpret, as they usu-
ally rely on physics-based information, thus better prepared for
explainability requirements.

1A digital twin is a digital representation of a physical system, equipped with
advanced analytics and driven by real-time sensor data.
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Model-based methods work by analyzing the residual
signal defined as the difference between the outputs of a com-
putational model and real-world measurements. Two differ-
ent architectures are usually considered in model-based fault
diagnosis for large-size distributed systems: centralized and
distributed. The centralized architecture offers high accuracy
but requires large computational costs which may limit real-
time implementation in the case of a large number of sen-
sors [16], [17]. In contrast, distributed architectures exploit data
fusion, i.e. they combine information from multiple sensors,
to improve decision-making and reduce the overall compu-
tational burden [18], [19], [20], [21], [22]. One of the most
effective model-based approaches exploits the Kalman filter
(KF) [23], and several generalizations were proposed to deal
with nonlinear systems, including the extended KF (EKF) [24],
the unscented KF (UKF) [25], the ensemble KF (EnKF) [26]
and the cubature KF (CKF) [27]. Also, various frameworks
for distributed implementations of the KF have been recently
investigated [28].

Distributed data-fusion architectures based on (variants of)
KF can also be exploited for fault diagnosis in large-size net-
worked systems. In [29], sensor fusion is utilized for fault
diagnosis of multi-channel estimation, however, fault isolation is
not taken into account and the system is not suitable for nonlinear
systems. Similarly, in [30] a fault-detection method specific for
micro-electro-mechanical systems is developed without isola-
tion capabilities. Other works (e.g. [31], [32], and [33]) focus
on multi-sensor data fusion for detecting both hardware and
software faults. These approaches employ a redundancy-based
approach (duplication/comparison) for fault diagnosis, where
two sensors are used for estimating one parameter, still their
complexity increases considerably when dealing with multiple
faults. Centralized and distributed multi-sensor architectures
with data fusion based on adaptive EKFs for detecting both
sensor and process faults were discussed in [34]. The centralized
architecture (with a single filter combining all raw data from
different sensors) exhibits high estimation accuracy, but low
robustness against sensor faults. The distributed architecture
(with a bank of local filters; one per sensor) showed limited
capability in detecting multiple sensor faults and dealing with
severe non-linearity. In [35], a Wasserstein average consensus
classification-based fusion algorithm is proposed to address
the problem of faulty sensors. Local filters share information
with their neighbors and use clustering algorithms to identify
trusted and untrusted local estimates. However, this approach is
limited to linear systems with at least half of the sensors being
reliable. In [36], an approach for distributed secure linear state
estimation using reachability analysis and distributed diffusion
KF is discussed. Reachability analysis is used to monitor the
deviation of local estimation and provide secure information
sharing among nodes. A distributed sensor deception attack
and estimation for a class of platoon-based connected vehicles
is discussed in [37]. Local state information is extracted via
a distributed KF and residuals are processed via a modified
generalized likelihood ratio (GLR) algorithm that detects the
attacks. However, techniques in both [36] and [37] are designed
for linear systems only.

A sensor-fusion scheme for nonlinear systems based on multi-
ple KFs, each tailored for a specific defect, was proposed in [38],
but showed significant limitations in terms of computational
cost. A sensor-fusion method based on UKF was proposed
for monitoring a gas turbine engine in [39]: four local filter
combinations were considered (given the sensors deployed on
the gas turbine), however, the method lacks generalization and
is unable to correctly isolate the defective sensor(s). A UKF-
based sensor-fusion system was also developed for microgrid
applications, where the number of local filters can be adapted to
deal with an arbitrary number of sensors, although the method
has not been tested in large-scale distributed systems [40].
Trade-offs between performance and scalability have been ana-
lyzed in [41], [42], [43] comparing distributed and centralized
architectures. The distributed nature along with a large number
of subsystems in natural-gas pipelines points towards distributed
fault-detection methods [44], [45], however, to the best of our
knowledge, a distributed framework exploiting a model-based
approach for SFDIA in pipelines does not exist.

In this paper, we propose a model-based SFDIA system for
natural-gas pipelines under transient flow exploiting a KF-based
sensor-fusion architecture. The system collects information
from different distributed sensors and processes it via several
local filters. The outputs from local filters are combined to
provide a robust SFDIA and improve decision-making in the
monitoring systems. Also, the computational burden of the
system is distributed over different local filters which can run in
parallel. Additionally, this study introduces SFDIA for a highly
nonlinear and intricate transient flow model described by partial
differential equations (PDEs). Traditionally, prevailing methods
have overlooked the challenges posed by utilizing large-scale
PDE systems. Furthermore, existing approaches rely on simplis-
tic models that fail to encompass the diverse range of large-scale
dynamics observed in real-world complex processes. In contrast,
our flow model incorporates highly nonlinear thermodynamic
properties and extensive spatio-temporal dynamics at a large
scale. Notably, there is currently no existing SFDIA tailored
for such models. To tackle these challenges, we propose a
sensor-fusion strategy for SFDIA using a transient flow model.
Moreover, we presented and evaluated our suggested architec-
ture with three different local filters (EnKF, UKF, EKF). Given
the highly nonlinear and large-scale nature of our system, the
fusing architecture employing EnKF and UKF has specifically
demonstrated high performance. Our work is based on [40],
where the fusing architecture with only UKF has been investi-
gated for micro-grid systems. In contrast, we investigated the
fusing architecture for a highly nonlinear and complex flow
model in the context of fault diagnosis. Table I contrasts the key
features of the proposed work with those of the closely related
works reviewed above. More specifically, the main contributions
of this work are listed below.
� A model-based SFDIA architecture, based on a distributed

FK approach, for natural-gas pipelines under transient flow
is proposed and discussed for the first time;

� A transient flow model is thoroughly discussed along with
its numerical solution with a focus on SFDIA application
(while commonly it is linked to leakage detection);
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TABLE I
COMPARISON OF THE EXISTING SENSOR FAULT DIAGNOSIS METHODS WITH OUR PROPOSED TECHNIQUE

� A generalized sensor-fusion strategy for SFDIA is pre-
sented with the performance assessment shown for three
types of local filters (EnKF, UKF, EKF);

� The effectiveness of the proposed architecture is assessed
using simulated nonlinear spatio-temporal data coupled
with synthetically-generated faults (we focus on two rel-
evant types of faults, namely bias faults and drift faults),
with results shown in terms of probability of detection,
probability of false alarm, and accuracy under different
scenarios.

The remainder of the paper is organized as follows. In
Section II, the transient flow model is presented in detail.
Section III discusses the sensor-fusion strategy for SFDIA based
on different types of local filters and Section IV explains the
data generation process. In Section V, numerical results are
compared and discussed to evaluate the performance of the
proposed SFDIA methods. Finally, Section VI provides some
concluding remarks and future directions.

Notation: Lower-case (resp. upper-case) bold letters denote
column vectors and matrices; (·)T denotes the transpose opera-
tor; (A)j denotes the jth column of the matrix A.

II. TRANSIENT-FLOW MODEL

A. Partial Differential Equations

The mathematical model for natural gas in pipelines expe-
riencing transient flow can be characterized by a first-order
quasilinear non-homogeneous hyperbolic system of PDEs [8].
Applying the laws of conservation of mass, momentum, and
energy, the system of PDEs can be written as

∂ρ

∂t
+

∂

∂s
(ρν) = 0 , (1)

ρ
∂ν

∂t
+

∂p

∂s
+ ρν

∂ν

∂s
= −w

A
− ρg sin θ , (2)

ρ

(
∂h

∂t
+ ν

∂h

∂s

)
− ∂p

∂t
− ν

∂p

∂s
=

q + wν

A
, (3)

where t and s denote time and space variables and the quantities
p, ρ, ν, w, A, h, g, θ and q represent the pressure, density, veloc-
ity, frictional force per unit length of pipe, cross-sectional area,
specific enthalpy, gravitational acceleration, angle of inclination,
and heat flow into the pipe per unit length and time, respectively.
The spatio-temporal domain is defined asΩ = {(s, t) : 0 ≤ s ≤
L, 0 ≤ t ≤ tf}, where L is the pipeline length and tf is the time

span. Using the real gas equation of state p = zρRT (where z
is the gas compressibility factor, R is the ideal gas constant, and
T is the temperature), the thermodynamic identity [47] is given
by

dh = CpdT +

(
T

ρ

(
∂ρ

∂T

)
p

+ 1

)
dp

ρ
, (4)

where Cp is the specific heat at constant pressure, (1) to (3)
can be rewritten with pressure, velocity, and temperature as
the dependent variables and are given in [48]. Further, it is
convenient to express the governing system of hyperbolic PDEs
in terms of pressure, flow, and temperature, which can be written
in compact form as

∂x

∂t
+A(x)

∂x

∂s
+ ζ(x) = 0 , (5)

wherex = [p, ṁ, T ]T . For θ = π, the coefficient matrixA(x) ∈
R

3×3 is defined in (6) shown at the bottom of the next page and
the vector ζ(x) ∈ R

3×1 is given as

ζ(x)=
[
−a2

sα1(Aqp+RTṁwz)
A2TCpp

w −a2
sα2(Aqp+RTṁwz)

A2Cpp2

]T
,

with α1 = 1 + T
z (

∂z
∂T )p and α2 = 1− p

z (
∂z
∂p )T

. The isentropic

wave speed is defined as as = (∂p/∂ρ)
1/2
s , where

(
∂p

∂ρ

)
s

=

⎡
⎣ρ
p

⎛
⎝1−p

z

(
∂z

∂p

)
T

− p

ρCpT

(
1+

T

z

(
∂z

∂T

)
p

)2⎞⎠
⎤
⎦
−1

.

The frictional force per unit length w can be expressed as w =
1
8fρv|v|πd, where d is the diameter, and the friction factor f is
computed using the Colebrook–White equation [49]

1√
f
= −2log

(
ε

3.7 d
+

2.51

Re
√
f

)
,

where ε is the roughness and Re is the Reynolds number. The
heat transfer between the natural gas and its surroundings per
unit length and time is given as q = −πdU(T − Ts), where Ts

is the ambient temperature and U is the overall heat transfer
coefficient. The thermodynamic and transport properties Cp and
z are fitted to the values calculated by GERG-2004 [8], [50].
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B. Method of Lines

An effective method to solve transient models involving
PDEs is the method of lines [51], which is based on spatial
discretization. A 5-point, fourth-order finite difference method
is employed to spatially discretize the system of PDEs in (5) to
obtain a set of ordinary differential equations (ODEs). The error
of this approximation isO(Δs4). After this conversion, the state
vector x can be formulated as

x(t) = [p1(t), . . . , pi(t), . . . , pn(t), ṁ1(t), . . . , ṁi(t),

. . . , ṁn(t), T1(t), . . . , Ti(t), . . . , Tn(t)]
T , (7)

and the system of ODEs can be expressed as

dx(t)

dt
= A(x)Dx(t)− ζ(x, t) � ϕ(t,x(t)) , (8)

where ζ(x, t) ∈ R
3n×1 is the assembled column vector of ζ(x)

and A(x) ∈ R
3n×3n is the assembled matrix. The computa-

tional matrix is defined as

D=− 1

12Δs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−25 48 −36 16 −3 · · · 0

−3 −10 18 −6 1 · · · 0

1 −8 0 8 −1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −8 0 8 −1

0 · · · −1 6 −18 10 3

0 · · · 3 −16 36 −48 25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The fourth-order Runge-Kutta method (RK4) is utilized to solve
the system of ODEs in (8) due to its effectiveness and simplicity.
The discretized equations with fixed time step can be character-
ized as a state-space model and its solution (advanced in time
tk) can be expressed as

xk+1 = xk +
Δt

6
(k1 + 2k2 + 2k3 + k4) ,

with

k1 = ϕ(xk, tk) ,

k2 = ϕ

(
xk +

Δt

2
k1, tk +

Δt

2

)
,

k3 = ϕ

(
xk +

Δt

2
k2, tk +

Δt

2

)
,

k4 = ϕ (xk +Δtk3, tk +Δt) ,

where xk = x(tk) and tk = k(Δt).

Fig. 1. Data-fusion architecture.

Further, the Courant-Friedrichs-Lewy (CFL) [52] condition
should be satisfied to guarantee numerical stability, i.e.

Δt

Δs
≤ 1

|ν|+ as
. (9)

III. SENSOR FUSION FOR FAULT DIAGNOSIS

A. System Architecture

We consider a data-fusion architecture for state estimation
based on the integration of several local filters and an informa-
tion mixture. The architecture offers appealing performance for
fault diagnosis and isolation while decentralizing the computa-
tional load from one master filter to numerous local filters. The
schematic diagram of the data-fusion architecture is shown in
Fig. 1. The architecture mainly operates with four stages: first,
the sensor measurements are grouped into various subsets of
measurements; second, all local filters simultaneously determine
the state vector estimate and covariance; third, the global state
estimate and covariance are evaluated in the information mixture
using the state estimates of the local filters; finally, the local
filters are updated with the global parameters.

The discrete-time process and measurement models for the
ith local filter can be expressed by the following equations

xi,k = f i(xi,k−1,uk−1) + vi,k , (10)

yi,k = hi(xi,k,uk) + ni,k , (11)

where the nonlinear mappings f i(·, ·) : Rnx × R
nu → R

nx and
hi(·, ·) : Rnx × R

nu → R
ny represent the process and mea-

surement models at the ith local filter, respectively, yi,k ∈
R

ny×1 is the filter output, vi,k ∈ R
nx×1 and ni,k ∈ R

ny×1

denote the process and measurement noises which are assumed
to be zero-mean Gaussian with covariance matrices Qi,k ∈
R

nx×nx and Ri,k ∈ R
ny×ny , respectively. Although the noise

in a data-fusion architecture is known to be correlated [53], we
will assume uncorrelated noise. We assume that the number of

A(x) =

⎡
⎢⎢⎣

− ṁ(a2
sα2−RTz)
Ap

a2
s

A
a2
sṁα1

AT

A− a2
sα

2
2Cpṁ

2−Ra2
sα

2
1α2ṁ

2z
ACpp2

ṁ(α2Cpa
2
s−Rza2

sα
2
1+RTCpz)

ACpp
a2
sα1ṁ

2(α2Cp−Rα2
1z)

ATCpp

−RTa2
sα1α2ṁz
ACpp2

RTa2
sα1z

ACpp
Rṁz(a2

sα
2
1+TCp)

ACpp

⎤
⎥⎥⎦ (6)
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local filters is equal to the number of sensors, namely N . The
state vector xi,k ∈ R

nx×1 is defined as

xi,k = [p1(k), . . . , pn(k), ṁ1(k), . . . , ṁn(k),

T1(k), . . . , Tn(k)]
T . (12)

The input vector uk−1 ∈ R
nu×1 is obtained using the initial and

boundary conditions and is defined as uk−1 = [uT
inu

T
bc,k−1]

T .
Next we discuss the data-fusion architecture based on the process
and measurement models in (10) and (11).

B. Fusion Strategy for Fault-Free System

The four steps of the algorithm implementing the data-fusion
architecture are described below.

Step 1: The local state estimate x̂i,0|0 and the local covariance
matrix P i,0|0 ∈ R

nx×nx of all the local filters are initialized
depending on the specific use case.

Step 2: The time and measurement updates are performed
depending on the type of local filters. In this paper, we considered
three types of local filters: EKF, EnKF, and UKF. The local filters
are explicitly discussed in Sections III-C1, III-C2, and III-C3,
respectively.

Step 3: The global parameters, i.e. the global state estimate
x̂m,k, the global state covariance matrix Pm,k and the global
process noise covariance matrix Qm,k, are evaluated in the
information mixture using the local state estimate x̂i,k|k, the
state covariance matrix P i,k|k and the process noise covariance
matrix Qi,k, as follows

Qm,k =

(
N∑
i=1

Q−1
i,k

)−1

, Pm,k =

(
N∑
i=1

P−1
i,k|k

)−1

,

x̂m,k = Pm,k

N∑
i=1

P−1
i,k|kx̂i,k|k .

Step 4: The global estimates obtained in Step 3 are subse-
quently utilized to update all the local filters. The local state es-
timate x̂i,k|k, the state covariance matrix P i,k|k and the process
noise covariance matrix Qi,k can be obtained from the global
parameters as follows

Qi,k = βiQm,k , P i,k|k = βiPm,k ,
N∑
i=1

βi = 1 ,

x̂i,k|k = x̂m,k ,

where βi is an information distribution factor weighting the ith
local filter.

The detailed block diagram of the local filter and the infor-
mation mixture is shown in Fig. 2. Further, the estimates of each
local filter (time update and measurement update) are indepen-
dent of the estimates of other local filters. The architecture of
the local filters is discussed in the next subsection.

C. Local-Filter Structure

We describe the measurement and time updates for the three
considered types of local filters: EKF, EnKF, and UKF. They

Fig. 2. Data-fusion architecture depicting a single local filter and information
mixture.

represent relevant KF-based techniques capable to handle non-
linear systems.

1) Extended Kalman Filter: The EKF is the most widely-
used Bayesian estimation technique for nonlinear systems. It is
based on the linearization of the nonlinear process and measure-
ment models around the most recent state estimate.

Using the first-order Taylor series expansion about the state
estimate x̂i,k−1|k−1, the a priori state estimate and covariance
are evaluated as

x̂i,k|k−1 = f i(x̂i,k−1|k−1,uk−1) ,

P i,k|k−1 = F i,kP i,k−1|k−1F
T
i,k +Qi,k ,

while the predicted mean and covariance of yi,k and the cross-
covariance between xi,k and yi,k are evaluated as

ŷi,k|k−1 = hi(x̂i,k|k−1,uk) ,

P y
i,k|k−1 = Hi,kP i,k|k−1H

T
i,k +Ri,k ,

P xy
i,k|k−1 = P i,k|k−1H

T
i,k ,

where F i,k and Hi,k are the Jacobian matrices of the nonlinear
functions f i(·, ·) and hi(·, ·), respectively defined in (10) and
(11), computed as

F i,k =
∂f i

∂x

∣∣∣∣
x̂i,k−1|k−1

, Hi,k =
∂hi

∂x

∣∣∣∣
x̂i,k|k−1

.

Using the above expressions, the a posteriori state estimate
and the Kalman gain are

x̂i,k|k = x̂i,k|k−1 +Ki,k(yi,k − ŷi,k|k−1) , (13)

Ki,k = P xy
i,k|k−1(P

y
i,k|k−1)

−1 . (14)

Also, the covariance is given as

P i,k|k = (I −Ki,kHi,k)P i,k|k−1 .

The time update and the measurement update of the EKF are
summarized as follows.

Time Update:

x̂i,k|k−1=f i(x̂i,k−1|k−1,uk−1),

P i,k|k−1=F i,kP i,k−1|k−1F
T
i,k+Qi,k,
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ŷi,k|k−1 = hi(x̂i,k|k−1,uk) .

Measurement Update:

Ki,k = P i,k|k−1H
T
i,k

(
Hi,kP i,k|k−1H

T
i,k +Ri,k

)−1
,

x̂i,k|k = x̂i,k|k−1 +Ki,k(yi,k − ŷi,k|k−1) ,

P i,k|k = (I −Ki,kHi,k)P i,k|k−1.

2) Ensemble Kalman Filter: The EnKF is a Monte Carlo
approximation of the KF, which is particularly useful for state
estimation in high-dimensional nonlinear systems. This statisti-
cal method maintains an ensemble representing the conditional
distribution of a random state vector given the measurement
set. The state estimate is generated from the sample mean and
covariance of the ensemble.

Let us consider an ensemble of samples, {x̂(j)
i,k−1|k−1, 1 ≤

j ≤ Ne}, drawn from p(xi,k−1|Yi,k−1), where Yi,k−1 =
{yi,1,yi,2, . . . ,yi,k−1} and Ne is the ensemble size, to approx-
imately represent the considered PDF. Similarly, an ensemble
of samples {v(j)

i,k , 1 ≤ j ≤ Ne}, drawn from the Gaussian dis-
tribution N (0,Qi,k), represents the process noise vi,k. Then,

the apriori ensemble {x̂(j)
i,k|k−1, 1 ≤ j ≤ Ne}, for the ith local

filter representing p(xi,k|Yi,k−1), can be expressed as

x̂
(j)
i,k|k−1 = f i

(
x̂
(j)
i,k−1|k−1,u

(j)
k−1

)
+ v

(j)
i,k .

The sample mean and covariance of the above ensemble are
computed as

x̂i,k|k−1 =
1

Ne

Ne∑
j=1

x̂
(j)
i,k|k−1 ,

P i,k|k−1 =
1

Ne − 1
Ex

i,k|k−1

(
Ex

i,k|k−1

)T
,

being Ex
i,k|k−1 = [(x̂

(1)
i,k|k−1 − x̂i,k|k−1), . . . , (x̂

(Ne)
i,k|k−1 −

x̂i,k|k−1)]. Analogously, an ensemble of samples {ŷ(j)
i,k|k−1, 1 ≤

j ≤ Ne}, which represents p(yi,k|Yi,k−1), can be expressed as

ŷ
(j)
i,k|k−1 = hi

(
x̂
(j)
i,k|k−1,u

(j)
k

)
+ n

(j)
i,k ,

where {n(j)
i,k , 1 ≤ j ≤ Ne} is generated using the Gaussian

distribution N (0,Ri,k) to represent the measurement noise.
The sample mean and covariance of the above ensemble are
computed as

ŷi,k|k−1 =
1

Ne

Ne∑
j=1

ŷ
(j)
i,k|k−1 ,

P y
i,k|k−1 =

1

Ne − 1
Ey

i,k|k−1

(
Ey

i,k|k−1

)T
,

being Ey
i,k|k−1 = [(ŷ

(1)
i,k|k−1 − ŷi,k|k−1), . . . , (ŷ

(Ne)
i,k|k−1 −

ŷi,k|k−1)]. Further, the cross-covariance between xi,k and yi,k

given Yi,k−1 can be defined as

P xy
i,k|k−1 =

1

Ne − 1
Ex

i,k|k−1

(
Ey

i,k|k−1

)T
.

Using the latest measurement yi,k, each member (x̂(j)
i,k|k−1) of

the a priori ensemble can be updated according to the (13)
and (14). The a posteriori ensemble {x̂(j)

i,k|k, 1 ≤ j ≤ Ne} can
be considered an approximate representation of p(xi,k|Yi,k),
thus the updated estimate of the mean and covariance can be
computed as

x̂i,k|k =
1

Ne

Ne∑
j=1

x̂
(j)
i,k|k , P i,k|k =

1

Ne − 1
Ex

i,k|k
(
Ex

i,k|k
)T

,

where the matrix Ex
i,k|k is defined as Ex

i,k|k = [(x̂
(1)
i,k|k −

x̂i,k|k), . . . , (x̂
(Ne)
i,k|k − x̂i,k|k)]. The ensemble-based prediction

and update are recursively repeated. The time update and the
measurement update of the EnKF are summarized as follows.

Time Update:

x̂
(j)
i,k|k−1 = f i

(
x̂
(j)
i,k−1|k−1,u

(j)
k−1

)
+ v

(j)
i,k ,

ŷ
(j)
i,k|k−1 = hi

(
x
(j)
i,k|k−1,u

(j)
k

)
+ n

(j)
i,k ,

x̂i,k|k−1 =
1

Ne

Ne∑
j=1

x̂
(j)
i,k|k−1 ,

ŷi,k|k−1 =
1

Ne

Ne∑
j=1

ŷ
(j)
i,k|k−1 ,

Ex
i,k|k−1 =

[
(x̂

(1)
i,k|k−1 − x̂i,k|k−1), . . . , (x̂

(Ne)
i,k|k−1 − x̂i,k|k−1)

]
,

Ey
i,k|k−1 =

[
(ŷ

(1)
i,k|k−1 − ŷi,k|k−1), . . . , (ŷ

(Ne)
i,k|k−1 − ŷi,k|k−1)

]
,

P i,k|k−1 =
1

Ne − 1
Ex

i,k|k−1

(
Ex

i,k|k−1

)T
.

Measurement Update:

P xy
i,k|k−1 =

1

Ne − 1
Ex

i,k|k−1

(
Ey

i,k|k−1

)T
,

P y
i,k|k−1 =

1

Ne − 1
Ey

i,k|k−1

(
Ey

i,k|k−1

)T
,

Ki,k = P xy
i,k|k−1(P

y
i,k|k−1)

−1 ,

x̂
(j)
i,k|k = x̂

(j)
i,k|k−1 +Ki,k

(
yi,k − ŷ

(j)
i,k|k−1

)
,

x̂i,k|k =
1

Ne

Ne∑
j=1

x̂
(j)
i,k|k ,

Ex
i,k|k =

[
(x̂

(1)
i,k|k − x̂i,k|k), . . . , (x̂

(Ne)
i,k|k − x̂i,k|k)

]
,

P i,k|k =
1

Ne − 1
Ex

i,k|k
(
Ex

i,k|k
)T

.

3) Unscented Kalman Filter: The UKF is a nonlinear filter-
ing technique based on unscented transform, where the first-
order linearization using Jacobian matrices is replaced with
a deterministic sampling method that accurately captures the
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posterior mean and covariance of the distribution using a set of
weighted sample points, namely sigma points.

Referring to the state vector as defined in (12), the set of sigma
points χi,k−1|k−1 for xi,k−1 can be generated as

χi,j,k−1|k−1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x̂i,k−1|k−1, j = 0

x̂i,k−1|k−1 +
√
nx + λ

(
P

1/2
i,k−1|k−1

)
j
,

j = 1, . . . , nx

x̂i,k−1|k−1 −
√
nx + λ

(
P

1/2
i,k−1|k−1

)
j−nx

,

j = nx, . . . , 2nx

where x̂i,k−1|k−1 and P i,k−1|k−1 are the mean and covariance
of xi,k−1. The scaling parameter λ is selected according to [40].
The sigma points are propagated through the nonlinear func-
tion f i(·, ·) to generateχi,j,k|k−1 = f i(χi,j,k−1|k−1,uk−1) and
used to compute the a priori state estimate and covariance as
follows

x̂i,k|k−1 =

2nx∑
j=0

W
(m)
j χi,j,k|k−1 , (15)

P i,k|k−1 =

2nx∑
j=0

W
(c)
j

(
χi,j,k|k−1 − x̂i,k|k−1

)
(
χi,j,k|k−1 − x̂i,k|k−1

)T
+Qi,k , (16)

where the weights W
(m)
j and W

(c)
j for the jth sigma point

correspond to the mean and covariance, and are defined as

W
(m)
0 =

λ

λ + nx
, W

(c)
0 =

λ

λ + nx
+ (1− α2 + β),

W
(c)
j = W

(m)
j =

1

2(λ + nx)
, j = 1, . . . , 2nx , (17)

where the parameter β in (17) is used to incorporate the
prior information of the distribution of x. For the update step,
the sigma points χi,j,k|k−1 are transformed as γi,j,k|k−1 =
hi(χi,j,k|k−1,uk). The predicted mean and covariance of yi,k

and the cross-covariance between xi,k and yi,k are computed as

ŷi,k|k−1 =

2nx∑
j=0

W
(m)
j γi,j,k|k−1 ,

P y
i,k|k−1 =

2nx∑
j=0

W
(c)
j

(
γi,j,k|k−1 − ŷi,k|k−1

) ·
(
γi,j,k|k−1 − ŷi,k|k−1

)T
+Ri,k ,

P xy
i,k|k−1 =

2nx∑
j=0

W
(c)
j

(
χi,j,k|k−1 − x̂i,k|k−1

) ·
(
γi,j,k|k−1 − ŷi,k|k−1

)T
.

The a posteriori state estimate is evaluated according to (13)
and (14), while the covariance as

P i,k|k = P i,k|k−1 −Ki,kP
y
i,k|k−1K

T
i,k . (18)

The above equations are summarized as time and measurement
updates below.

Time Update:

χi,j,k|k−1 = f i(χi,j,k−1|k−1,uk−1) ,

x̂i,k|k−1 =

2nx∑
j=0

W
(m)
j χi,j,k|k−1 ,

W
(m)
0 =

λ

λ + nx
, W

(c)
0 =

λ

λ + nx
+ (1− α2 + β) ,

W
(c)
j = W

(m)
j =

1

2(λ + nx)
, j = 1, . . . , 2nx ,

γi,j,k|k−1 = hi(χi,j,k|k−1,uk) ,

ŷi,k|k−1 =

2nx∑
j=0

W
(m)
j γi,j,k|k−1 ,

P i,k|k−1 =

2nx∑
j=0

W
(c)
j

(
χi,j,k|k−1 − x̂i,k|k−1

) ·
(
χi,j,k|k−1 − x̂i,k|k−1

)T
+Qi,k .

Measurement Update:

P y
i,k|k−1 =

2nx∑
j=0

W
(c)
j

(
γi,j,k|k−1 − ŷi,k|k−1

) ·
(
γi,j,k|k−1 − ŷi,k|k−1

)T
+Ri,k ,

P xy
i,k|k−1 =

2nx∑
j=0

W
(c)
j

(
χi,j,k|k−1 − x̂i,k|k−1

) ·
(
χi,j,k|k−1 − ŷi,k|k−1

)T
,

Ki,k = P xy
i,k|k−1(P

y
i,k|k−1)

−1 ,

x̂i,k|k = x̂i,k|k−1 +Ki,k(yi,k − ŷi,k|k−1) ,

P i,k|k = P i,k|k−1 −Ki,kP
y
i,k|k−1K

T
i,k .

D. Data-Fusion for SFDIA

When sensor faults occur, faulty measurements affect multiple
local filters and related estimates. The main challenge of an
efficient SFDIA framework is its ability to perform detection,
isolation, and accommodation while considering that the results
from each task affect the remaining tasks.

For fault detection, the state-variance vector (ξk ∈ R
nx×1)

and the state residual (ri,k) are employed as anomaly indicators,
where the 
th entry of the state-variance vector is

ξ
(�)
k =

1

N

N∑
i=1

(
x̂
(�)
i,k|k − 1

N

N∑
i=1

(
x̂
(�)
i,k|k

))2

, (19)

being x̂(�)
i,k|k the 
th entry of state vector estimate, and the residual

ri,k of the ith local filter is defined as

ri,k =
[(
x̂i,k|k − x̂m,k)

T (x̂i,k|k − x̂m,k

)] 1
2 . (20)
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Fig. 3. KF-based data-fusion architecture.

TABLE II
PARAMETERS UTILIZED FOR SIMULATIONS

A fault will make the entries of the state-variance vector and
the residuals high, thus facilitating detection. However, the
interaction among the various components of the architecture
coupled with the system’s non-linearity makes the isolation not
trivial. Hence, proper design of local filters and related grouping
of measurements is crucial for isolation capability: for a system
equipped with N sensors, we consider N local filters, each
receiving N − 1 sensor measurements as input (each one with
a different sensor excluded).

More specifically, we use the state-variance vector (ξk) for
detection, comparing its entries with a predefined threshold
condition, and the residual (ri,k) for isolation, identifying the
one exhibiting the largest value. For example, if the jth sensor
is faulty, then the N − 1 local filters processing the jth sensor
measurement are affected and the single local filter devoid of the
jth sensor measurement is not. This reflects in the information
mixture which is computed using N − 1 inaccurate estimates
and 1 accurate estimate, resulting in the global state estimate
(x̂m,k) being inaccurate as well, while the residual associated to
the accurate local filter (rj,k) being larger than the other residu-
als. The flowchart of the mechanism exploiting data fusion and
the computation of the state-variance vector and the residuals to
perform detection and isolation is illustrated in Fig. 3.

IV. DATA GENERATION

A. Fault-Free Data

The simulated data for a transient flow in the natural-gas
pipeline is generated using a numerical solution of the flow
model discussed in Section II. We choose a high-pressure
natural-gas pipeline with the parameters listed in Table II.

Fig. 4. Simulated data.

The simulations are done for tf ∈ [0, 3600 s] with p(0, t) =
8.4 MPa, T (0, t) = 303.15 K and ṁ(L, t) = f(t). The bound-
ary conditions are selected similar to those in [8]. In the nu-
merical solution of the transient-flow model, the following
spatial and temporal step sizes are considered: Δs = 7500m
and Δt = 10 s. Fig. 4 displays the boundary conditions and
related spatial-temporal evolution of the state variables devoid
of additive model noise.

Zero-mean white Gaussian noise (qj [k]) is added to the gen-
erated ideal (without noise and without faults) value (xj [k]), i.e.
(referring to the kth sample from the jth sensor)

yj [k] = xj [k] + qj [k], (21)

where yj [k] is the noisy fault-free measurement.

B. Faulty Data

In order to evaluate the SFDIA performance, synthetic fault
signals have been generated and superimposed to the simulated
data from the transient-flow model, thus mimicking sensor mea-
surements in the presence of sensor failures. Faults in sensors
could be of various types with bias, drift, freezing, and ran-
dom faults being among the most popular [12], [13]. Without
compromising generality, we considered bias and drift faults to
represent hard and soft failures, respectively. The mathematical
models for these types of faults are:

Bias fault: A constant level (or bias) b is added for M
consecutive samples to the sensor measurements, i.e.

yfj [k] =

{
yj [k] + b, 0 ≤ k −m ≤ M
yj [k], else

,

where yfj [k] is the faulty measurement, and m is the starting
time of the fault.
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TABLE III
MEASUREMENT NOISE FOR PRESSURE, TEMPERATURE AND FLOW RATE

CORRESPONDING TO DIFFERENT SNR CASES

Drift fault: The actual measurement drifts up (with a maxi-
mum bias level b) within M time instants, i.e.

yfj [k] =

⎧⎨
⎩
yj [k] +

b(k−m+1)
M , 0 ≤ k −m ≤ M

yj [k] + b, M ≤ k −m ≤ M +K
yj [k], else

,

where K represents the number of samples during which the
drift fault maintains the saturated bias level b. Additionally, we
stressed the impact of the drift by assuming M > K.

V. NUMERICAL RESULTS

To illustrate the performance of the proposed technique for the
transient-flow model, we considered scenarios with and without
sensor faults. For non-faulty scenarios, we only consider noise in
the measurements to evaluate the state estimation performance
of the architecture. The effectiveness of the data-fusion SFDIA
architecture is then validated in faulty scenarios.

A. Non-Faulty Scenarios

We compare the performance of the fusing EKF, fusing EnKF,
and fusing UKF with their corresponding basic counterparts
against the measurement noise. To validate the robustness of
the proposed architecture, we have considered three different
signal-to-noise ratios (SNRs), i.e., low, moderate, and high.
The distribution of the measurement noise for all three cases
is demonstrated in Table III.

For EnKF, the size of the ensembleNe is chosen as 40. In case
of UKF, the scaling parameters α and β are set to 10−3 and 2,
respectively [40]. The a priori estimate of the error covariance
matrix P i,0|0 is considered as an identity matrix. The standard
deviation of the process noise is considered 10% lower than
that of the measurement noise. The Qi,k and Ri,k matrices are
also diagonal matrices with diagonal entries corresponding to
the process and measurement noise variances, respectively.

For the data-fusion architecture, N = 63 local filters are
considered, where each local filter has 62 sensor measurements.
The estimation performance of different methods is assessed in
terms of spatial and temporal root mean square error (RMSE),
which is averaged over τ iterations with different random seeds
in each iteration. The evaluation metric RMSE is defined as

RMSE =
1

τ

τ∑
i=1

(
‖X − X̂‖F√

NsNk

)
,

where ‖ · ‖F is the Frobenius norm, the true state
matrix X and the estimated state matrix X̂ are de-
fined as X = [xi,1|1,xi,2|2, . . . ,xi,Nk |Nk

] and X̂ =
[x̂i,1|1, x̂i,2|2, . . . , x̂i,Nk |Nk

], respectively. Further, the number

TABLE IV
COMPARISON OF RMSE FOR DIFFERENT FILTERS UNDER NON-FAULTY

SCENARIOS

of spatial nodes Ns and the number of time steps Nk are
defined as Ns = L/Δs and Nk = tf/Δt, respectively, and
τ = 10. The estimation performance in terms of the RMSE
for fusing EnKF, fusing UKF, and fusing EKF along with the
corresponding basic filters is explicitly summarized in Table IV:
fusing filters have higher estimation accuracy in comparison to
the basic counterparts with the fusing EnKF and fusing UKF
being preferable in overall performance.

B. Faulty Scenarios

The effectiveness of the proposed schemes is investigated in
the presence of various types of sensor faults. More specifically,
we consider weak and strong faults represented by bias and
drift, respectively. To represent weak (resp. strong) faults, the
absolute level b is assumed to be uniformly distributed between
20% and 40% (resp. 60% and 90%) of the data amplitude.
Also, a random sign is considered for the actual level, so that
both positive and negative faults are randomly generated. The
fault lengths (M and K) are also assumed to be uniformly
distributed between 10 and 20 consecutive samples. It should
be noted that choosing a uniform distribution of fault level b and
fault lengths makes it easier to evaluate the performance of the
SFDIA without focusing on a particular fault level or length.
Moreover, to evaluate the robustness of the fusing architecture
against consecutive faults, we choose random faulty sensors
among the available spatial measurements generated by PDEs.
For this scenario, we consider measurement noise corresponding
to the moderate SNR.

Numerical results have been obtained via Monte Carlo simula-
tions with 50 runs using MATLAB software. The probabilities of
detection and false alarm, computed on a sample-by-sample ba-
sis, are selected as metrics to evaluate the detection performance
of the data-fusion SFDIA architecture. More specifically, Fig. 5
shows the receiver operating characteristic (ROC) curves for
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Fig. 5. ROC plots comparing detection performance of fusing filters for different fault types: (a) strong bias (SB), (b) weak bias (WB), (c) strong drift (SD), and
(d) weak drift (WD).

each physical quantity (i.e. pressure, flow rate, and temperature)
by varying their respective threshold value defined in (19). The
results demonstrate that the proposed SFDIA architecture can
detect sensor faults effectively even in the case of weak faults.
Again, fusing UKF and fusing EnF are confirmed a better choice
with respect to fusing EKF, mainly due to their capability to
better handle high non-linearity, which are significant in the gas
flow model (especially related to the pressure).

Further, the isolation matrix is chosen as a performance metric
to demonstrate the isolation capability of the proposed SFDIA
architecture. Fig. 6 illustrates the confusion matrices explicitly
for the fusing EnKF, fusing UKF, and fusing EKF to demonstrate
their efficacy in isolating the weak bias faults. The fusing EnKF
demonstrates the capability to accurately predict and isolate all
faulty sensors with only a few false alarms. In contrast, the fusing
UKF accurately predicts faults related to the pressure and flow
rate sensors while producing a small number of false alarms.
However, it does not provide precise predictions for faults in the
temperature sensors. Additionally, the fusing EKF accurately
predicts faults in the temperature sensors but does not make any

predictions corresponding to the pressure sensor faults. Further,
the performance of the proposed SFDIA is computed in terms of
detection accuracy and RMSE for a fixed threshold. The detec-
tion accuracy of fusing EnKF, fusing UKF, and fusing EKF for
different faults under different SNR scenarios, i.e., low, medium,
and high SNR, is presented in Tables V, VI, and VII, respectively.
It can be distinctly observed from the results that all three
variants exhibit high detection performance under moderate
and high SNR scenarios. Additionally, we compare the RMSE
performance of the fusing architectures with and without FDI
in Fig. 7, considering moderate SNR. The outcomes emphasize
that the fusing architectures with FDI yield lower RMSE values
compared to those without FDI. Meanwhile, the fused EKF
demonstrates notably higher RMSE values, especially evident in
scenarios without FDI. This discrepancy arises from its difficulty
in accurately handling the nonlinear system, leading to signif-
icant deviations when confronted with faulty measurements.
Furthermore, the fusing architectures incorporating FDI exhibit
superior performance compared to their counterparts without
FDI.
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Fig. 6. Confusion matrix for weak bias faults (a) fusing EnKF (b) fusing UKF (c) fusing EKF. Here the index 0 indicates the non-faulty case.

Fig. 7. Comparing RMSE of three fusing filters when four different faults, including strong bias (SB), weak bias (WB), strong drift (SD), and weak drift (WD),
are added to (a) pressure (b) flow rate (c) temperature sensors.

TABLE V
LOW SNR SCENARIO: CONTRASTING THE ACCURACY OF THREE FUSING

FILTERS WHEN FOUR DIFFERENT FAULTS, NAMELY STRONG BIAS (SB), WEAK

BIAS (WB), STRONG DRIFT (SD), AND WEAK DRIFT (WD), ARE ADDED TO

THE PRESSURE, FLOW RATE, AND TEMPERATURE SENSORS

TABLE VI
MODERATE SNR SCENARIO: CONTRASTING THE ACCURACY OF THREE FUSING

FILTERS WHEN FOUR DIFFERENT FAULTS, NAMELY STRONG BIAS (SB), WEAK

BIAS (WB), STRONG DRIFT (SD), AND WEAK DRIFT (WD), ARE ADDED TO

THE PRESSURE, FLOW RATE, AND TEMPERATURE SENSORS

TABLE VII
HIGH SNR SCENARIO: CONTRASTING THE ACCURACY OF THREE FUSING

FILTERS WHEN FOUR DIFFERENT FAULTS, NAMELY STRONG BIAS (SB), WEAK

BIAS (WB), STRONG DRIFT (SD), AND WEAK DRIFT (WD), ARE ADDED TO

THE PRESSURE, FLOW RATE, AND TEMPERATURE SENSORS

VI. CONCLUSION

This paper investigated a model-based SFDIA architecture
designed for natural gas pipelines undergoing transient flow
conditions. The proposed distributed filtering-based architecture
assists in fault identification by merging data gathered from
multiple sensors. The fusing architecture consists of several
local filters and an information mixer. These local filters operate
concurrently in parallel to estimate state variables, which are
subsequently combined in the information mixer to compute
fault-free state estimates. Three different versions of the fusion
filter, including the fusing UKF, fusing EKF, and fusing EnKF
were specifically crafted for fault diagnosis. Validation of these
methods using simulated data demonstrates the effectiveness of
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the proposed framework, especially in identifying, isolating, and
handling various sensor faults using diverse local filters.

Future work will focus on exploring fault diagnosis in real-
world, large-scale distributed industrial processes. To enhance
the accuracy of the proposed architecture, an adaptive thresh-
olding scheme for fault detection can be developed, and other
non-linear Bayesian filtering methods such as the particle filter
can be integrated. Moreover, there is potential for investigating
architectures capable of effectively handling scenarios involving
multiple simultaneous sensor faults.
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